A Bijection to Count (1-23-4)-Avoiding Permutations

نویسنده

  • DAVID CALLAN
چکیده

A permutation is (1-23-4)-avoiding if it contains no four entries, increasing left to right, with the middle two adjacent in the permutation. Here we give a 2-variable recurrence for the number of such permutations, improving on the previously known 4-variable recurrence. At the heart of the proof is a bijection from (1-23-4)-avoiding permutations to increasing ordered trees whose leaves, taken in preorder, are also increasing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Refinement of Wilf-equivalence for Permutations

Recently, Dokos et al. conjectured that for all k,m > 1, the patterns 12 . . . k(k+ m+ 1) . . . (k + 2)(k + 1) and (m+ 1)(m+ 2) . . . (k +m+ 1)m. . . 21 are maj-Wilfequivalent. In this paper, we confirm this conjecture for all k > 1 and m = 1. In fact, we construct a descent set preserving bijection between 12 . . . k(k−1)-avoiding permutations and 23 . . . k1-avoiding permutations for all k > ...

متن کامل

AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k

Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...

متن کامل

On Bijections between 231-avoiding Permutations and Dyck Paths

We construct a bijection between 231-avoiding permutations and Dyck paths that sends the sum of the major index and the inverse major index of a 231avoiding permutation to the major index of the corresponding Dyck path. Furthermore, we relate this bijection to others and exhibit a bistatistic on 231-avoiding permutations which is related to the q, t-Catalan numbers.

متن کامل

Decompositions and Statistics for Β(1, 0)-trees and Nonseparable Permutations

The subject of pattern avoiding permutations has its roots in computer science, namely in the problem of sorting a permutation through a stack. A formula for the number of permutations of length n that can be sorted by passing it twice through a stack (where the letters on the stack have to be in increasing order) was conjectured by West, and later proved by Zeilberger. Goulden and West found a...

متن کامل

Pattern Avoiding Permutations & Rook Placements

First, we look at the distribution of permutation statistics in the context of pattern-avoiding permutations. The first part of this chapter deals with a recursively defined bijection of Robertson [6] between 123and 132-avoiding permutations. We introduce the general notion of permutation templates and pivots in order to give a non-recursive pictorial reformulation of Robertson’s bijection. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010